Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.742
Filtrar
1.
Biochem Biophys Res Commun ; 710: 149917, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38604071

RESUMO

Melanin-concentrating hormone (MCH) receptor 1 (MCHR1), a G protein-coupled receptor, is poised for interaction with its ligands on the plasma membrane. Analyses of MCHR1 knockout mice suggest that this receptor could be a therapeutic target for the treatment of appetite disorders, glucose metabolism, psychiatric disorders, and inflammation. Binding of MCH to MCHR1 initiates calcium signaling, which is subsequently attenuated through receptor internalization. However, the ultimate destiny of the receptor post-internalization remains unexplored. In this study, we report the extracellular secretion of MCHR1 via exosomes. The recruitment of MCHR1 to exosomes occurs subsequent to its internalization, which is induced by stimulation with the ligand MCH. Although a highly glycosylated form of MCHR1, potentially representing a mature form, is selectively recruited to exosomes, the MCHR1 transferred into other cells does not exhibit functionality. The truncation of MCHR1 at the C-terminus not only impairs its response to MCH but also hinders its recruitment to exosomes. These findings imply that functional MCHR1 could be secreted extracellularly via exosomes, a process that may represent a mechanism for the termination of intracellular MCHR1 signaling.


Assuntos
Exossomos , Hormônios Hipotalâmicos , Receptores do Hormônio Hipofisário , Humanos , Camundongos , Animais , Exossomos/metabolismo , Receptores do Hormônio Hipofisário/metabolismo , Transdução de Sinais , Camundongos Knockout , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Melaninas/metabolismo
2.
Biol Sex Differ ; 15(1): 33, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570844

RESUMO

Recent preclinical research exploring how neuropeptide transmitter systems regulate motivated behavior reveal the increasing importance of sex as a critical biological variable. Neuropeptide systems and their central circuits both contribute to sex differences in a range of motivated behaviors and regulate sex-specific behaviors. In this short review, we explore the current research of how sex as a biological variable influences several distinct motivated behaviors that are modulated by the melanin-concentrating hormone (MCH) neuropeptide system. First, we review how MCH regulates feeding behavior within the context of energy homeostasis differently between male and female rodents. Then, we focus on MCH's role in lactation as a sex-specific process within the context of energy homeostasis. Next, we discuss the sex-specific effects of MCH on maternal behavior. Finally, we summarize the role of MCH in drug-motivated behaviors. While these topics are traditionally investigated from different scientific perspectives, in this short review we discuss how these behaviors share commonalities within the larger context of motivated behaviors, and that sex differences discovered in one area of research may impact our understanding in another. Overall, our review highlights the need for further research into how sex differences in energy regulation associated with reproduction and parental care contribute to regulating motivated behaviors.


Assuntos
Hormônios Hipotalâmicos , Melaninas , Neuropeptídeos , Feminino , Masculino , Animais , Caracteres Sexuais , Hormônios Hipotalâmicos/farmacologia , Hormônios Hipotalâmicos/fisiologia , Hormônios Hipofisários/farmacologia , Hormônios Hipofisários/fisiologia
3.
Parasit Vectors ; 17(1): 192, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654385

RESUMO

BACKGROUND: Infection with Angiostrongylus cantonensis (AC) in humans or mice can lead to severe eosinophilic meningitis or encephalitis, resulting in various neurological impairments. Developing effective neuroprotective drugs to improve the quality of life in affected individuals is critical. METHODS: We conducted a Gene Ontology enrichment analysis on microarray gene expression (GSE159486) in the brains of AC-infected mice. The expression levels of melanin-concentrating hormone (MCH) were confirmed through real-time quantitative PCR (RT-qPCR) and immunofluorescence. Metabolic parameters were assessed using indirect calorimetry, and mice's energy metabolism was evaluated via pathological hematoxylin and eosin (H&E) staining, serum biochemical assays, and immunohistochemistry. Behavioral tests assessed cognitive and motor functions. Western blotting was used to measure the expression of synapse-related proteins. Mice were supplemented with MCH via nasal administration. RESULTS: Postinfection, a marked decrease in Pmch expression and the encoded MCH was observed. Infected mice exhibited significant weight loss, extensive consumption of sugar and white fat tissue, reduced movement distance, and decreased speed, compared with the control group. Notably, nasal administration of MCH countered the energy imbalance and dyskinesia caused by AC infection, enhancing survival rates. MCH treatment also increased the expression level of postsynaptic density protein 95 (PSD95) and microtubule-associated protein-2 (MAP2), as well as upregulated transcription level of B cell leukemia/lymphoma 2 (Bcl2) in the cortex. CONCLUSIONS: Our findings suggest that MCH improves dyskinesia by reducing loss of synaptic proteins, indicating its potential as a therapeutic agent for AC infection.


Assuntos
Angiostrongylus cantonensis , Metabolismo Energético , Hormônios Hipotalâmicos , Melaninas , Hormônios Hipofisários , Infecções por Strongylida , Animais , Angiostrongylus cantonensis/efeitos dos fármacos , Melaninas/metabolismo , Camundongos , Hormônios Hipotalâmicos/metabolismo , Infecções por Strongylida/tratamento farmacológico , Infecções por Strongylida/parasitologia , Hormônios Hipofisários/metabolismo , Metabolismo Energético/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/parasitologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Masculino , Feminino
4.
J Comp Neurol ; 532(2): e25588, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38335050

RESUMO

Melanin-concentrating hormone (MCH) cells in the hypothalamus regulate fundamental physiological functions like energy balance, sleep, and reproduction. This diversity may be ascribed to the neurochemical heterogeneity among MCH cells. One prominent subpopulation of MCH cells coexpresses cocaine- and amphetamine-regulated transcript (CART), and as MCH and CART can have opposing actions, MCH/CART+ and MCH/CART- cells may differentially modulate behavioral outcomes. However, it is not known if there are differences in the cellular properties underlying their functional differences; thus, we compared the neuroanatomical, electrophysiological, and morphological properties of MCH cells in male and female Mch-cre;L10-Egfp reporter mice. Half of MCH cells expressed CART and were most prominent in the medial hypothalamus. Whole-cell patch-clamp recordings revealed differences in their passive and active membrane properties in a sex-dependent manner. Female MCH/CART+ cells had lower input resistances, but male cells largely differed in their firing properties. All MCH cells increased firing when stimulated, but their firing frequency decreases with sustained stimulation. MCH/CART+ cells showed stronger spike rate adaptation than MCH/CART- cells. The kinetics of excitatory events at MCH cells also differed by cell type, as the rising rate of excitatory events was slower at MCH/CART+ cells. By reconstructing the dendritic arborization of our recorded cells, we found no sex differences, but male MCH/CART+ cells had less dendritic length and fewer branch points. Overall, distinctions in topographical division and cellular properties between MCH cells add to their heterogeneity and help elucidate their response to stimuli or effect on modulating their respective neural networks.


Assuntos
Cocaína , Hormônios Hipotalâmicos , Animais , Feminino , Masculino , Camundongos , Anfetaminas/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Melaninas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Hormônios Hipofisários/metabolismo
5.
Gen Comp Endocrinol ; 350: 114477, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387532

RESUMO

Gonadotropin-inhibitory hormone (GnIH) was the first reported hypothalamic neuropeptide inhibiting reproduction in vertebrates. Since its discovery in the quail brain, its orthologs have been identified in a variety of vertebrate species and even protochordates. Depending on the species, the GnIH precursor polypeptides comprise two, three or four mature peptides of the RFamide family. It has been well documented that GnIH inhibits reproduction at the brain-pituitary-gonadal levels and participates in metabolism, stress response, and social behaviors in birds and mammals. However, most studies in fish have mainly been focused on the physiological roles of GnIH in the control of reproduction and results obtained are in some cases conflicting, leaving aside its potential roles in the regulation of other functions. In this manuscript we summarize the information available in fish with respect to the structural diversity of GnIH peptides and functional roles of GnIH in reproduction and other physiological processes. We also highlight the molecular mechanisms of GnIH actions on target cells and possible interactions with other neuroendocrine factors.


Assuntos
Gonadotropinas , Hormônios Hipotalâmicos , Animais , Gonadotropinas/metabolismo , Vertebrados/metabolismo , Peptídeos/metabolismo , Hipotálamo/metabolismo , Reprodução/fisiologia , Peixes/metabolismo , Mamíferos/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo
6.
Endocrinology ; 165(5)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38368624

RESUMO

Glucoprivic feeding is one of several counterregulatory responses (CRRs) that facilitates restoration of euglycemia following acute glucose deficit (glucoprivation). Our previous work established that glucoprivic feeding requires ventrolateral medullary (VLM) catecholamine (CA) neurons that coexpress neuropeptide Y (NPY). However, the connections by which VLM CA/NPY neurons trigger increased feeding are uncertain. We have previously shown that glucoprivation, induced by an anti-glycolygic agent 2-deoxy-D-glucose (2DG), activates perifornical lateral hypothalamus (PeFLH) neurons and that expression of NPY in the VLM CA/NPY neurons is required for glucoprivic feeding. We therefore hypothesized that glucoprivic feeding and possibly other CRRs require NPY-sensitive PeFLH neurons. To test this, we used the ribosomal toxin conjugate NPY-saporin (NPY-SAP) to selectively lesion NPY receptor-expressing neurons in the PeFLH of male rats. We found that NPY-SAP destroyed a significant number of PeFLH neurons, including those expressing orexin, but not those expressing melanin-concentrating hormone. The PeFLH NPY-SAP lesions attenuated 2DG-induced feeding but did not affect 2DG-induced increase in locomotor activity, sympathoadrenal hyperglycemia, or corticosterone release. The 2DG-induced feeding response was also significantly attenuated in NPY-SAP-treated female rats. Interestingly, PeFLH NPY-SAP lesioned male rats had reduced body weights and decreased dark cycle feeding, but this effect was not seen in female rats. We conclude that a NPY projection to the PeFLH is necessary for glucoprivic feeding, but not locomotor activity, hyperglycemia, or corticosterone release, in both male and female rats.


Assuntos
Neurônios , Neuropeptídeo Y , Ratos Sprague-Dawley , Animais , Masculino , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Feminino , Ratos , Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/genética , Saporinas/farmacologia , Neuropeptídeos/metabolismo , Desoxiglucose/farmacologia , Melaninas/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Região Hipotalâmica Lateral/efeitos dos fármacos , Hormônios Hipotalâmicos/metabolismo , Orexinas/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Hormônios Hipofisários/metabolismo , Glucose/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos
7.
Anesth Analg ; 138(3): 579-588, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051670

RESUMO

BACKGROUND: Aging and preoperative sleep disorders are the main risk factors affecting postoperative cognitive outcomes. However, the pathogenesis of delayed neurocognitive recovery after surgery remains ambiguous, and there is still a lack of potential biomarkers for delayed neurocognitive recovery in older adult patients with preoperative sleep disorders. Our study aimed to explore the relationship between melanin-concentrating hormone (MCH) and delayed neurocognitive recovery early after surgery in older adult patients with preoperative sleep disorders. METHODS: In this monocentric prospective observational study, 156 older adult patients (aged 65 years or older) with preoperative sleep disorders undergoing elective total hip arthroplasty (THA) or total knee arthroplasty (TKA) were included at an academic medical center in Inner Mongolia, China, from October 2021 to November 2022, and all patients underwent spinal anesthesia. The Pittsburgh Sleep Quality Index (PSQI) was applied to assess the preoperative sleep quality of all patients, and preoperative sleep disorders were defined as a score of PSQI >5. We measured the levels of cerebrospinal fluid (CSF) MCH and plasma MCH of all patients. The primary outcome was delayed neurocognitive recovery early after surgery. All patients received cognitive function assessment through the Montreal Cognitive Assessment (MoCA) 1 day before and 7 days after surgery (postoperative day 7 [POD7]). Delayed neurocognitive recovery was defined as a score of POD7 MoCA <26. The potential confounders included variables with P < .2 in the univariate logistic analysis, as well as the important risk factors of delayed neurocognitive recovery reported in the literature. Multivariable logistic regression model based on the Enter method assessed the association of MCH and delayed neurocognitive recovery in older adult patients with preoperative sleep disorders. RESULTS: Fifty-nine (37.8%) older adult patients with preoperative sleep disorders experienced delayed neurocognitive recovery at POD7. Increase in CSF MCH levels (odds ratio [OR] for an increase of 1 pg/mL = 1.16, 95% confidence interval [CI], 1.09-1.23, P < .001) and decrease in plasma MCH levels (OR for an increase of 1 pg/mL = 0.92, 95% CI, 0.86-0.98, P = .003) were associated with delayed neurocognitive recovery, after adjusting for age, sex, education, baseline MoCA scores, American Society of Anesthesiologists (ASA) grade, and coronary heart disease (CHD). CONCLUSIONS: In older adult patients with preoperative sleep disorders, MCH is associated with the occurrence of delayed neurocognitive recovery after surgery. Preoperative testing of CSF MCH or plasma MCH may increase the likelihood of identifying the high-risk population for delayed neurocognitive recovery in older adult patients with preoperative sleep disorders.


Assuntos
Raquianestesia , Hormônios Hipotalâmicos , Humanos , Idoso , Raquianestesia/efeitos adversos , Hormônios Hipotalâmicos/líquido cefalorraquidiano , Melaninas/líquido cefalorraquidiano , Hormônios Hipofisários/líquido cefalorraquidiano
8.
Peptides ; 172: 171128, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070684

RESUMO

It has been revealed that hypothalamic neurons containing the peptide, melanin-concentrating hormone (MCH) can influence learning [1] and memory formation [2], but the cellular mechanisms by which they perform this function are not well understood. Here, we examine the role of MCH neural input to the hippocampus, and show in vitro that optogenetically increasing MCH axon activity facilitates hippocampal plasticity by lowering the threshold for synaptic potentiation. These results align with increasing evidence that MCH neurons play a regulatory role in learning, and reveal that this could be achieved by modulating plasticity thresholds in the hippocampus.


Assuntos
Hormônios Hipotalâmicos , Hormônios Hipotalâmicos/metabolismo , Hipocampo/metabolismo , Hormônios Hipofisários , Neurônios/metabolismo , Melaninas
9.
Int J Neuropsychopharmacol ; 27(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38135278

RESUMO

BACKGROUND: Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that projects throughout the central nervous system, including the noradrenergic locus coeruleus (LC). Our previous study suggested that MCH/MCH receptor 1 (MCHR1) in the LC may be involved in the regulation of depression. The present study investigated whether the role of MCH/MCHR1 in the LC in depression-like behaviors is associated with the regulation of norepinephrine. METHOD: Chronic unpredictable stress (CUS) and an acute intra-LC microinjection of MCH induced depression-like behaviors in rats. The MCHR1 antagonist SNAP-94847 was also microinjected in the LC in rats that were suffering CUS or treated with MCH. The sucrose preference, forced swim, and locomotor tests were used for behavioral evaluation. Immunofluorescence staining, enzyme-linked immunosorbent assay, western blot, and high-performance liquid chromatography with electrochemical detection were used to explore the mechanism of MCH/MCHR1 in the regulation of depression-like behaviors. RESULTS: CUS induced an abnormal elevation of MCH levels and downregulated MCHR1 in the LC, which was highly correlated with the formation of depression-like behaviors. SNAP-94847 exerted antidepressant effects in CUS-exposed rats by normalizing tyrosine hydroxylase, dopamine ß hydroxylase, and norepinephrine in the LC. An acute microinjection of MCH induced depression-like behaviors through its action on MCHR1. MCHR1 antagonism in the LC significantly reversed the MCH-induced downregulation of norepinephrine production by normalizing MCHR1-medicated cAMP-PKA signaling. CONCLUSIONS: Our study confirmed that the MCH/MCHR1 system in the LC may be involved in depression-like behaviors by downregulating norepinephrine production. These results improve our understanding of the pathogenesis of depression that is related to the MCH/MCHR1 system in the LC.


Assuntos
Hormônios Hipotalâmicos , Locus Cerúleo , Ratos , Animais , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Norepinefrina , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipofisários/farmacologia , Melaninas/farmacologia
10.
Neuropeptides ; 100: 102349, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37269608

RESUMO

Prolactin-releasing peptide (PrRP) has been investigated as a potential therapeutic for diabetes by the effect of food intake reduction, increasing leptin signaling, and insulin tolerance. Recent studies focused on its synaptogenesis and protective effects against neurodegeneration. Whereas 1,2-diacetylbenzene (DAB), a common metabolite of a neurotoxicant 1,2-diethyl benzene, causes memory impairment and neurotoxicity partly through the inflammatory process. Our present study assessed the effect of PrRP in microglia and its action in balancing the inflammation to protect against DAB. We observed that PrRP modulated NADPH oxidase - regulated NLRP3 inflammasome and PRL signaling pathways differently between physical and toxic conditions in microglia.


Assuntos
Hormônios Hipotalâmicos , Doenças Neuroinflamatórias , Humanos , Hormônio Liberador de Prolactina/farmacologia , Prolactina/metabolismo , Hormônios Hipotalâmicos/metabolismo
11.
Front Neuroendocrinol ; 70: 101069, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149229

RESUMO

Hypothalamic melanin-concentrating hormone (MCH) neurons participate in many fundamental neuroendocrine processes. While some of their effects can be attributed to MCH itself, others appear to depend on co-released neurotransmitters. Historically, the subject of fast neurotransmitter co-release from MCH neurons has been contentious, with data to support MCH neurons releasing GABA, glutamate, both, and neither. Rather than assuming a position in that debate, this review considers the evidence for all sides and presents an alternative explanation: neurochemical identity, including classical neurotransmitter content, is subject to change. With an emphasis on the variability of experimental details, we posit that MCH neurons may release GABA and/or glutamate at different points according to environmental and contextual factors. Through the lens of the MCH system, we offer evidence that the field of neuroendocrinology would benefit from a more nuanced and dynamic interpretation of neurotransmitter identity.


Assuntos
Hormônios Hipotalâmicos , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipotalâmicos/farmacologia , Hormônios Hipofisários/farmacologia , Hormônios Hipofisários/fisiologia , Neurônios/metabolismo , Melaninas/farmacologia , Melaninas/fisiologia , Hipotálamo/metabolismo , Ácido Glutâmico/farmacologia , Ácido Glutâmico/fisiologia , Neurotransmissores , Ácido gama-Aminobutírico
13.
Nat Neurosci ; 26(6): 1021-1031, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37188873

RESUMO

Early Alzheimer's disease (AD) is associated with hippocampal hyperactivity and decreased sleep quality. Here we show that homeostatic mechanisms transiently counteract the increased excitatory drive to CA1 neurons in AppNL-G-F mice, but that this mechanism fails in older mice. Spatial transcriptomics analysis identifies Pmch as part of the adaptive response in AppNL-G-F mice. Pmch encodes melanin-concentrating hormone (MCH), which is produced in sleep-active lateral hypothalamic neurons that project to CA1 and modulate memory. We show that MCH downregulates synaptic transmission, modulates firing rate homeostasis in hippocampal neurons and reverses the increased excitatory drive to CA1 neurons in AppNL-G-F mice. AppNL-G-F mice spend less time in rapid eye movement (REM) sleep. AppNL-G-F mice and individuals with AD show progressive changes in morphology of CA1-projecting MCH axons. Our findings identify the MCH system as vulnerable in early AD and suggest that impaired MCH-system function contributes to aberrant excitatory drive and sleep defects, which can compromise hippocampus-dependent functions.


Assuntos
Doença de Alzheimer , Hormônios Hipotalâmicos , Camundongos , Animais , Doença de Alzheimer/genética , Neurônios/fisiologia , Hormônios Hipofisários , Sono , Camundongos Transgênicos
14.
Fish Physiol Biochem ; 49(2): 385-398, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37043055

RESUMO

We examined neuronal responses of hypothalamic melanin-concentrating hormone (MCH) and corticotropin-releasing hormone (CRH) to background color in the self-fertilizing fish, Kryptolebias marmoratus. Fish were individually reared in lidless white or black cylindrical plastic containers for 15 days. The number of MCH-immunoreactive (ir) cell bodies in the nucleus lateralis tuberis (NLT) of the hypothalamus was significantly greater in the white-acclimated fish, while no significant differences were observed in the nucleus anterior tuberis (NAT) of the hypothalamus. Significant differences were not seen in the number of CRH-ir cell bodies in the NLT between the groups. The body of the white- and black-acclimated fish appeared lighter and darker, respectively, compared with the baseline color. In the black-acclimated fish, feeding activity was significantly greater with a tendency toward higher specific growth rate compared with the observations in white-acclimated fish. No significant inter-group cortisol level differences were observed. These results indicate that background color affects MCH neuronal activity in the NLT as well as body color adaptation but does not affect CRH neuronal activity in K. marmoratus.


Assuntos
Hormônios Hipotalâmicos , Peixes Listrados , Animais , Hormônio Liberador da Corticotropina , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipofisários , Melaninas , Hipotálamo/metabolismo , Peixes Listrados/metabolismo
15.
Neuroscience ; 522: 1-10, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121379

RESUMO

Human heroin addicts and mice administered morphine for a 2 week period show a greatly increased number of hypothalamic hypocretin (Hcrt or orexin) producing neurons with a concomitant reduction in Hcrt cell size. Male rats addicted to cocaine similarly show an increased number of detectable Hcrt neurons. These findings led us to hypothesize that humans with alcohol use disorder (AUD) would show similar changes. We now report that humans with AUD have a decreased number and size of detectable Hcrt neurons. In addition, the intermingled melanin concentrating hormone (MCH) neurons are reduced in size. We saw no change in the size and number of tuberomammillary histamine neurons in AUD. Within the Hcrt/MCH neuronal field we found that microglia cell size was increased in AUD brains. In contrast, male rats with 2 week alcohol exposure, sufficient to elicit withdrawal symptoms, show no change in the number or size of Hcrt, MCH and histamine neurons, and no change in the size of microglia. The present study indicates major differences between the response of Hcrt neurons to opioids and that to alcohol in human subjects with a history of substance abuse.


Assuntos
Hormônios Hipotalâmicos , Neuropeptídeos , Humanos , Masculino , Ratos , Camundongos , Animais , Orexinas/metabolismo , Neuropeptídeos/metabolismo , Histamina , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Melaninas , Neurônios/metabolismo , Etanol
16.
Nat Commun ; 14(1): 1755, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36990984

RESUMO

The lateral hypothalamic area (LHA) integrates homeostatic processes and reward-motivated behaviors. Here we show that LHA neurons that produce melanin-concentrating hormone (MCH) are dynamically responsive to both food-directed appetitive and consummatory processes in male rats. Specifically, results reveal that MCH neuron Ca2+ activity increases in response to both discrete and contextual food-predictive cues and is correlated with food-motivated responses. MCH neuron activity also increases during eating, and this response is highly predictive of caloric consumption and declines throughout a meal, thus supporting a role for MCH neurons in the positive feedback consummatory process known as appetition. These physiological MCH neural responses are functionally relevant as chemogenetic MCH neuron activation promotes appetitive behavioral responses to food-predictive cues and increases meal size. Finally, MCH neuron activation enhances preference for a noncaloric flavor paired with intragastric glucose. Collectively, these data identify a hypothalamic neural population that orchestrates both food-motivated appetitive and intake-promoting consummatory processes.


Assuntos
Hormônios Hipotalâmicos , Ratos , Masculino , Animais , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Hormônios Hipofisários , Melaninas , Região Hipotalâmica Lateral/metabolismo , Neurônios/metabolismo
17.
J Chem Neuroanat ; 129: 102241, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36738851

RESUMO

The amylin and the melanin-concentrating hormone [MCH] are two peptides related to energetic homeostasis. During lactation, it is possible to locate neurons expressing these peptides in the preoptic area of rat dams. In addition, it was demonstrated that the number of MCH neurons in this region is modulated by litter size. Taken together, the aims of this work were (1) to verify the time course of amylin immunoreactivity during lactation; (2) to verify whether litter size modulates the number of amylin-ir neurons (3) to verify whether there is colocalization between the amylin-ir and MCH-ir neurons. Our results show that (1) there is an increase in the number of amylin-ir neurons during lactation, which reaches a peak at postpartum day 19 and drastically reduces after weaning; (2) there is no correlation between litter size and the number of amylin-ir neurons; and (3) there is minimal overlap between amylin-ir and MCH-ir neurons.


Assuntos
Hormônios Hipotalâmicos , Área Pré-Óptica , Feminino , Ratos , Animais , Área Pré-Óptica/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Hormônios Hipofisários , Hormônios Hipotalâmicos/metabolismo , Melaninas , Lactação , Neurônios/metabolismo
18.
Peptides ; 163: 170975, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36791916

RESUMO

Melanin-concentrating hormone (MCH) is a peptide related to the reproductive function by interacting with the hypothalamus-pituitary-gonadal axis. In addition to the MCH central production, it is also found in the blood with a putative role as a neurohormone. Thereby, our focus is on steroid hormones' role in regulating centrally produced MCH in the incerto-hypothalamic area (IHy) and the peripheral MCH in the serum. For this, we investigated the effect of estradiol and/or progesterone injection on the number of MCH immunoreactive (MCH-ir) neurons at the IHy and serum levels. For further study of the role of progesterone, we analyzed the effect of blockade of progesterone receptors by its antagonist on MCH-ir neurons at the IHy and serum. To identify whether such regulation over MCH is established before sexual maturation, we assessed the effect of peripubertal removal of steroid hormones on MCH-ir neurons at the IHy and serum levels at adult age. Our results show that injecting estradiol in ovariectomized female rats reduces the number of MCH-ir neurons in the IHy, in addition to its serum levels. Blockade of progesterone receptors in intact females increases the number of MCH-ir neurons in the IHy and its serum concentration. The regulation of these hormones over the MCH peptidergic system is established before sexual maturation, once the peripubertal removal of the ovaries changes the serum levels of MCH and the number of MCH-ir neurons in the IHy of adult females. Such results support the inhibitory role of steroid hormones over the MCH system.


Assuntos
Hormônios Hipotalâmicos , Progesterona , Feminino , Ratos , Animais , Estradiol , Receptores de Progesterona , Hormônios Hipofisários , Hipotálamo/metabolismo , Hormônios Hipotalâmicos/metabolismo , Melaninas
19.
Biochem Biophys Res Commun ; 646: 44-49, 2023 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-36706704

RESUMO

AIM: Endometriosis is one of the most common gynecologic diseases in women of reproductive age. The pathophysiology of endometriosis is still not fully understood. Phoenixin (PNX-14) is a newly discovered neuropeptide that regulates the hypothalamo-pituitary-gonadal (HPG) axis and reproductive functions. Recently, we reported that PNX-14, its precursor protein and receptor were expressed in human endometrium. Moreover, PNX-14 serum levels in endometriosis were reduced. This study aimed to evaluate the in vitro biological functions of physiological PNX-14 concentrations on the ectopic endometrium Z12 cells. METHODS: The proliferation and migration of Z12 cells were assessed using the xCELLigence® RTCA DP system following 72 h of stimulation with 0.05 and 0.2 nM of PNX-14. GPR173 and small integral membrane protein 20 (SMIM20) gene expression was evaluated using quantitative polymerase chain reaction (qPCR) and the protein levels of GPR173 were analyzed using Western blot analysis. RESULTS: PNX-14 at the concentration observed in the serum of patients with endometriosis (0.05 nM) reduced GPR173 and increased SMIM20 expression, while protein levels of GPR173 remained unchanged. Cell proliferation was increased by the 0.02 nM PNX-14- the concentration found in healthy subjects. The 0.2 nM of PNX-14 decreased SMIM20 expression with no change to GPR173 expression and reduced ectopic epithelial cell proliferation during the first 5 h after stimulation. However, at 72 h, the proliferation increased. CONCLUSIONS: This study shows that PNX-14 at endometriosis specific concentration desensitized ectopic epithelium to PNX-14, and increased the expression of SMIM20 to restore the physiological levels of PNX-14.


Assuntos
Endometriose , Hormônios Hipotalâmicos , Neuropeptídeos , Humanos , Feminino , Células Epiteliais/metabolismo , Proliferação de Células
20.
J Neurosci ; 43(5): 846-862, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36564184

RESUMO

Stress disorders impair sleep and quality of life; however, their pathomechanisms are unknown. Prolactin-releasing peptide (PrRP) is a stress mediator; we therefore hypothesized that PrRP may be involved in the development of stress disorders. PrRP is produced by the medullary A1/A2 noradrenaline (NA) cells, which transmit stress signals to forebrain centers, and by non-NA cells in the hypothalamic dorsomedial nucleus. We found in male rats that both PrRP and PrRP-NA cells innervate melanin-concentrating hormone (MCH) producing neurons in the dorsolateral hypothalamus (DLH). These cells serve as a key hub for regulating sleep and affective states. Ex vivo, PrRP hyperpolarized MCH neurons and further increased the hyperpolarization caused by NA. Following sleep deprivation, intracerebroventricular PrRP injection reduced the number of REM sleep-active MCH cells. PrRP expression in the dorsomedial nucleus was upregulated by sleep deprivation, while downregulated by REM sleep rebound. Both in learned helplessness paradigm and after peripheral inflammation, impaired coping with sustained stress was associated with (1) overactivation of PrRP cells, (2) PrRP protein and receptor depletion in the DLH, and (3) dysregulation of MCH expression. Exposure to stress in the PrRP-insensitive period led to increased passive coping with stress. Normal PrRP signaling, therefore, seems to protect animals against stress-related disorders. PrRP signaling in the DLH is an important component of the PrRP's action, which may be mediated by MCH neurons. Moreover, PrRP receptors were downregulated in the DLH of human suicidal victims. As stress-related mental disorders are the leading cause of suicide, our findings may have particular translational relevance.SIGNIFICANCE STATEMENT Treatment resistance to monoaminergic antidepressants is a major problem. Neuropeptides that modulate the central monoaminergic signaling are promising targets for developing alternative therapeutic strategies. We found that stress-responsive prolactin-releasing peptide (PrRP) cells innervated melanin-concentrating hormone (MCH) neurons that are crucial in the regulation of sleep and mood. PrRP inhibited MCH cell activity and enhanced the inhibitory effect evoked by noradrenaline, a classic monoamine, on MCH neurons. We observed that impaired PrRP signaling led to failure in coping with chronic/repeated stress and was associated with altered MCH expression. We found alterations of the PrRP system also in suicidal human subjects. PrRP dysfunction may underlie stress disorders, and fine-tuning MCH activity by PrRP may be an important part of the mechanism.


Assuntos
Hormônios Hipotalâmicos , Privação do Sono , Ratos , Masculino , Humanos , Animais , Hormônio Liberador de Prolactina/farmacologia , Hormônio Liberador de Prolactina/metabolismo , Privação do Sono/metabolismo , Transtornos do Humor/etiologia , Qualidade de Vida , Ratos Wistar , Hormônios Hipotalâmicos/metabolismo , Sono/fisiologia , Neurônios/fisiologia , Norepinefrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...